CAS 号:11006-33-0
英文名字:Zeocin powder

SKU: MB3575-1 分类: , ,

Zeocin是常用的高效筛选抗生素,适合多种细胞类型筛选表达Sh ble基因的载体(细菌、真核微生物、植物细胞和动物细胞)。
Zeocin是从轮枝链霉菌(Streptomyces CL990)分离得到的一种铜螯合的糖肽抗生素,通过嵌入DNA使其断裂而导致细胞死亡。Zeocin可在大多数需氧细胞中发挥功效。
分子式:C55H83N19O21S2Cu 分子量:1137.41
溶液配制方法:将zeocin 粉末溶于HEPES buffer (5 g/l, pH 7.2+/- 0.1),浓度为100mg/mL。然后用0.22微米滤膜过滤。

Zeocin可选择Sh ble基因表达的细胞。与现在使用的其他动物细胞标记物无交叉抗性。因此这种抗生素可用来分离对其他筛选剂(如:庆大霉素,潮霉素)有抗性的克隆。Zeocin是一种属于争光霉素家族的糖蛋白抗生素,在体内能作用于大多数细菌(包括E. coli)、真菌(如:酵母菌)、植物细胞、动物细胞。 液体Zeocin可用于细胞培养,用于筛选转化株的Zeocin浓度根据pH值和盐浓度改变。pH越高,盐浓度越低,Zeocin活性越大。 普通大肠杆菌菌株筛选可在25 μg/ml zeocin浓度的低盐LB琼脂培养基中进行,pH调至7.5。

Zeocin™ is normally used at a concentration of 100 μg/ml, a 1000-fold dilution from the stock solution. However, the optimal concentration
needs to be determined for your cells. Suggested concentrations of Zeocin™ for selection in some examples of mammalian cells are listed below:

Cell line Medium Zeocin® conc References
B16 (Mouse melanocytes) RPMI 20-250 μg/ml 1-3
CHO (Chinese hamster ovarian cells) DMEM 100-500 μg/ml 1, 4, 5
COS (Monkey kidney cells) DMEM 100-400 μg/ml 6, 7
HEK293 (Human embryonic kidney cells) DMEM 100-400 μg/ml 8, 9
HeLa (Human uterine cells) DMEM 50-100 μg/ml 10, 11
J558L (Mouse melanocytes) RPMI 400 μg/ml 12
MCF-7 (Human breast adenocarcinoma cells) DMEM 100-400 μg/ml 13, 14
MEFs (Mouse embryonic fibroblasts) DMEM 200-400 μg/ml 15, 16
THP-1 (Human monocytes) RPMI 200 μg/ml 17

1. Bouayadi K. et al., 1997. Overexpression of DNA polymerase beta sensitizes mammalian cells to 2’,3’ deoxycytidine and 3’-azido-3’-deoxythymidine. Cancer Res. 57: 110-116.
2 Hirose Y. et al., 2012. Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. PNAS, 109: 4263 – 4268.
3. Fan H. et al., 2012. Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clin Cancer Res.18(20):5628-38.
4. Li F. et al., 1996. Post-translational modifications of recombinant P-selection glycoprotein ligand-1 required for binding to P- and E- selection. J. Biol. Chem. 271: 3255-3264.
5. Ogura T. et al., 2004. Resistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1. J Biol Chem. 279(14):13711-20.
6. Saxena A. et al., 2002. H2, the minor subunit of the human asialoglycoprotein receptor, trafficks intracellularly and forms homo-oligomers, but does not bind asialo-orosomucoid. J Biol Chem. 277(38):35297-304.
7. Kanamori A. et al., 2002. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation totyrosine sulfation, whereas p-selectin does not. J Biol Chem. 277(36):32578-86.
8. Ahmed et al., 2013. TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15. J Immunol. 190(5):2217-28.
9. Büllesbach EE. & Schwabe C., 2006. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8. J Biol Chem. 281(36):26136-43.
10. Mesnil M. et al., 1996. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. PNAS 93(5):1831-5.
11. Maszczak-Seneczko D. et al., 2013. UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate. J Biol Chem. 288(30):21850-60.
12. Cedeno-Laurent F. et al., 2010. Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J Immunol. 185(8):4659-72.
13. Kim HS. et al., 2004. Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in MCF-7 human breast cancer cells. Cancer Res. 64(6):2229-37.
14. List HJ. et al., 2001. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J Biol Chem. 276(26):23763-8.
15. Waak J. et al., 2009. Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1. J Biol Chem. 284(21):14245-57.
16. Maue A. et al., 2013. The polysaccharide capsule of Campylobacter jejuni modulates the host immune response. Infect Immun. 81(3):665-72